Dynamic Graph Generation for Large Scale Operational Train Timetabling
نویسندگان
چکیده
The aim of operational train timetabling is to find a conflict free timetable for a set of passenger and freight trains with predefined stopping time windows along given routes in an infrastructure network so that station capacities and train dependent running and headway times are observed. Typical models for this problem are based on time-discretized networks for the train routes coupled by conflict constraints. They grow very fast for large scale instances and quickly lead to intractable models. Motivated by the observation that relaxations mostly use a narrow corridor inside such networks, we develop a general dynamic graph generation framework in order to control this size even for infinite time horizons. It can be applied to time-discretized networks modelling the routing of objects through capacity restricted handling stations with the property that early paths in the network are preferred. Without sacrificing any information compared to the full model, it includes a few additional time steps on top of the latest arcs currently in use. This " frontier " of the graphs can be extended automatically as required by solution processes such as column-generation or Lagrangian relaxation. The corresponding algorithm is efficiently implementable and linear in the arcs of the non-time-expanded network with a factor depending on the basic time offsets of these arcs. We give some bounds on the required additional size in important special cases. With this dynamic graph generation technique we are able to solve relax-ations of large scale real-world train timetabling problems of the German railway network of Deutsche Bahn. By enhancing the informativeness of the relaxation by convex load-balancing functions that distribute the train load on single tracks, it forms the basis of a dynamic rolling horizon approach to finding integer solutions of good quality.
منابع مشابه
Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling
The aim of the train timetabling problem is to find a conflict free timetable for a set of passenger and freight trains along their routes in an infrastructure network. Several constraints like station capacities and train dependent running and headway times have to be satisfied. In this work we deal with large scale instances of the aperiodic train timetabling problem for the German railway ne...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملNon-cyclic train timetabling and comparability graphs
We consider the customary formulation of non-cyclic train timetabling, calling for a maximumprofit collection of compatible paths in a suitable graph. The associated ILP models look for a maximum-weight clique in a(n exponentially-large) compatibility graph. By taking a close look at the structure of this graph, we analyze the existing ILP models and propose some new stronger ones, all having t...
متن کاملA multi-stage IP-based heuristic for class timetabling and trainer rostering
We consider an academic timetabling and rostering problem involving periodic retraining of large numbers of employees at an Australian electricity distributor. This problem is different from traditional high-school and university timetabling problems studied in the literature in several aspects. We propose a three-stage heuristic consisting of timetable generation, timetable improvement, and tr...
متن کاملSolving Railway Track Allocation Problems
The optimal track allocation problem (OPTRA), also known as the train routing problem or the train timetabling problem, is to find, in a given railway network, a conflict-free set of train routes of maximum value. We propose a novel integer programming formulation for this problem that is based on additional ‘configuration’ variables. Its LP-relaxation can be solved in polynomial time. These re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011